RESPONSE OF MATURE ENDOSPERM OF SOME VARIETIES OF RICE (Oryza sativa L.) FOR THEIR CALLUSING AND DIFFERENTIATION

R. P. SINGH^{1*}, H. P. SHARMA², P. C. THAKUR³ and S.N. ORAON⁴

- ^{1*}Department of Botany, Chas College, Chas, Bokaro 827013, Jharkhand (INDIA)
- ² University Department of Botany, Ranchi University, Ranchi- 834008, Jharkhand (INDIA)
- ³Department of Botany. Chas College, Chas, Bokaro-827013, Jharkhand (INDIA)

Kev words

Callusing,
Differentiation, in vitro,
Oryza sativa L.

Received on:

15.05.2014

Accepted On: 19.07.2014

*Corresponding

Author

ABSTRACT

Rice is one of the most important cereals and it is a staple food crop of the most of the Asian countries. It fulfils 40% of the nutritional needs of a vast population of the world. In comparison to the population explosion of the world the production of rice, has not been reached up to the mark. In this regard, it is a high time, that the production of rice should be increased scientifically. But before going in detailed studies such as genetic engineering, protoplast culture, anther culture etc, it is essential to screen the rice varieties from its mature endosperm level first. In this perspective four varieties of rice had been undertaken for the response of their mature endosperm on different concentrations of 2, 4-D for their callusing and upon joint concentration of IAA and KN for their differentiation. Out of the four varieties of rice, the mature endosperm of Kanak and Pusa-Basmati showed their best callusing and differentiation in comparison to Tulsi and Birsa-101. For the best callusing, the concentration 4mg/l of 2, 4-D was confirmed. On the other hand the combined concentration of IAA (2mg/l) + KN (4mg/l) was proved as the best differentiating concentration of the growth regulators.

INTRODUCTION

Although in terms of area, the cultivation of rice comes next to wheat, but rice ranks first regarding the nutritional values among the different food crops. Rice provides more calories in respect to other cereals (De Datta 1981).

Rice is an annual herb, which belongs to the family *Poaceae*. Its inflorescence is of Spikelet subtype of the type Racemose. Its flower has got six stamens and one pistil. It has got two perianths, which become modified into two lodicules.

India has the largest rice growing area with 42 million hectares, which is followed by People's Republic of China. About 90 million tons per hectare is the annual

production of rice in India (Ahmed Ilyas et al. 2006).

On worldwide perspective rice production has to be increased to cope with the global population explosion (Athawal 1972). In India, to maintain the present level of self sufficiency annual rice production has to be increased to 115 million tons by 2020 (Ahmed Ilyas et al. 2006). Hence, the most modern technology should be adopted to artificially explore induced genetic variability in rice improvement programme. In past time many investigators have worked upon rice tissue culture (Bajaj and Bidani 1980, Zafar et al. 1992, Ghosh et al. 1993, Datta et al. 1996, Usha Rani and Reddy 1996, Khanum et al. 1997, Cooking et al. 2003, Jelodar et al. 2003). Some scientists

⁴Department of Botany, B.S. College, Lohardaga, Jharkhand (INDIA

had worked upon rice mature endosperm (Sharma 1986, Nakano et al. 1975, Nag 1970).

MATERIALS AND METHODS

In the present investigation two lowland (Kanak and Pusa Basmati) and two upland (Tulsi and Birsa-101) varieties of rice of Jharkhand had been undertaken. The seeds of the above varieties of rice had been collected from Birsa Agriculture University, Kanke, Ranchi.

MS (Murasige and Skoog 1962 medium) was used as basal medium for the present investigation. Analytical grade chemicals and double glass distilled water were used for the preparation of medium. To solidify the medium 1.0% Difco Bacto Agar was used. The p^H of the medium was maintained at 5.8 before autoclaving using 0.1 N NaOH or 0.1 N HCl. About 20 ml. of the hot medium was dispensed into each culture tube (15.0 x 2.5 cm). Later on all the tubes were plugged with nonabsorbent cotton wrapped in cheese cloth. After some time, the culture tubes were autoclaved at 1.06 kg/sq. cm for 15 minutes.

Since the explant (mature endosperm) was not grown in *in-vitro* condition, there was a need for their surface sterilization. The surface sterilized mature endosperm was placed on sterile petridishes under aseptic condition. Mature endosperm of these varieties were cut into many pieces and two pieces of endosperm were implanted upon the nutrient medium in each culture tube under aseptic condition and maintained at the temperature 25+ 5°C & the R.H. 80%. The calli, which were developed from the mature endosperm were sub-cultured for their differentiation in the differentiating medium.

RESULTS AND DISCUSSION

The inoculated explants (mature endosperm) induced callusing on MS medium supplemented with different concentrations

of 2, 4-D. The induced callus was mostly granular, friable and pale yellow (Fig. 1). It was observed that, when the concentration of 2, 4-D was 2mg/1, Kanak showed 40% response, which was followed by Pusa Basmati, Tulsi and Birsa-101. However, when the concentration of 2.4-D was 4mg/1 the best callusing 81% was induced by Kanak, which was followed by Pusa Basmti 75%, Tulsi 66% and Birsa – 101 62%. But at higher concentration of 2, 4-D tendency of callusing was gradually declined (Table -1). On the contrary, Sharma (1986) reported that at higher concentration of 2, 4-D excellent callusing was induced in some varieties of rice. However similar to our findings Zagorska et al. 1997 reported that the lower concentration of 2, 4-D is the most potent for the induction of callus.

From the Table 1, it was also inferred that the low-land varieties of rice responded better percentage of callusing than the upland varieties of rice.

Table – 2 clearly shows the varietal differences in the differentiation. At the strength 2 mg/l of IAA and 4 mg/l of KN, the mature endosperm derived calli of Kanak and Pusa Basmati started their differentiation fast i.e., from the first week of inoculation. However, at the same concentration of above growth regulators Tulsi and Birsa - 101 started their differentiation from the second week and their rate of differentiation was comparatively slow. It was also seen that numbers of differentiated roots were more than the number of shoots. In case of Pusa Basmati, it was observed that number of roots was many, but number of shoots was only two but both the shoots were coiled (Fig. – 02). More or less similar condition was observed in Kanak, Tulsi and Birsa -101.

Hence, it became clear that the combined strength of IAA (2 mg/l) + KN (4mg/l) was the best strength as upon this strength, the mature endosperm derived calli of all the varieties of rice undertaken had differentiated very well. Similar to our findings, Sharma (1986) reported that MS +

IAA (2 mg/l) + KN (4 mg/l) was the best differentiating medium for the differentiation of mature endosperm derived callus of some varieties of rice.

Fig. – 1. Mature endosperm derived callus of Pusa Basmati

Fig – 2 Differentiation in Mature Endosperm derived Callus in Pusa Basmati

TABLE- 1 Percentage of culture showing callus on MS + different concentrations of 2.4-D + YE (3000 mg/l) from the mature endosperm of the different varieties of rice

Varieties	Concentrations of 2, 4-D				
	2 mg	4 mg	6 mg	8 mg	10
	/1	/1	/1	/1	mg
					/1
Kanak	40%	81%	71%	69%	62%
Pusa-	30%	75%	67%	73%	56%
Basmati					
Tulsi	15%	66%	65%	64%	50%
Birsa –	10%	62%	60%	61%	48%
101					

Data recorded after 4 weeks of culture, YE - Yeast Extract

CONCLUSION

From the above discussion, it was concluded that best strength of 2, 4-D was 4 mg/l for the callusing as upon this concentration, the mature endosperm of all the varieties of rice undertaken induced their best callusing (Kanak 40 %, Pusa Basmati 30%, Tulsi 15% Regarding, Birsa-101 -10%). and differentiation, it was concluded that mature endosperm derived callus of Kanak and Basmati induced their differentiation 42% and 36% respectively, at the combined strength of IAA 2 mg / 1 + KN 4 mg / l. It was followed by Tulsi 30% and Birsa -101, 25 %. Hence, finally it is concluded that lowland varieties of rice responded better for callusing as well as differentiation in comparison to upland varieties of rice.

ACKNOWLEDGEMENTS

Authors express their sincere gratitude to Dr. C. Prasad, Professor and Dean, Faculty of Science, Vinoba Bhave University, Hazaribag, for his all kinds of support to complete this investigation.

TABLE-2 Differentiation of Mature Endosperm derived callus in different varieties	of rice,
subcultured on MS + IAA (2 mg/l) + KN (4 mg/l)	

SL	Varieties	% of	Mean no.	Mean	Mean no.	Mean	Rate of
No.		differen-	of roots	length of	of shoots	length of	Differen-
		tiation	per	roots	per	shoots	tiation
		of roots and	culture	(cm.)	culture	(cm.)	
		shoots					
1.	Kanak	42	25.1± 0.2	2.2±0.1	3.5±0.1	1.7 ± 0.2	Fast
2.	Pusa-	36	20.1±0.1	1.6 ±0.2	2.1 ± 0.1	1.8 ± 0.1	Fast
	Basmati						
3.	Tulsi	30	10.2 ±0.4	1.5±0.1	1.6± 0.3	1.0± 0.3	Average
4.	Birsa-	25	8. 3 ±0.3	1.3 ±0.2	1.4 ± 0.2	0.8 ± 0.2	Average
	101						

Data recorded after 4 weeks of the culture, mean \pm

REFERENCES

Ahmed Ilyas M, Viraktemath B C and Ramesha M S 2006. Prospects and problems of hybrid rice seed production in India. *J. Rice Research*, **1(1):**68-69

Athawal D S 1972. IRRI'S current research programme: 41-46. In: *Rice Science and Man*; International Rice Research Institute, LOS Banos, Philippines, pp 41-46

Bajaj Y P S and Bidani M 1980. Differentiation of genetically variable plants from embryo-derived callus of rice, phytomorphology, **30:**290-294.

Cooking E C, Blackhall N W, Davey M R, Power J. B, Brar D S and Khush G S 2003. Enhancing salinity tolerance in rice using sexual and somatic hybrids of *Oryza sativa* and *Porteresia coarctata*. In: *Advances in Rice Genetics supplement to Rice Genetics – IV*. Khush G S and Hardy B (Eds.), Proceedings of the fourth International Rice Genetics Symposium, 22-27 October, 2000; Lc Banos (Philippines), PP. 500-501.

Datta K., Torrizo L, Oliva N, Alam M F, Abrigo W U C, Vasquez E, Quimio J, Alejar M, Nicola Z, Khus G S and Datta S K 1996. Production of transgenic rice by protoplast, biolistic and agrobacterium systems. IN: *Proc. Vth International Symposium Rice Mol. Biol*, Yi Hsiem Pub. Co. Taipei, Taiwan, PP. 159-167,

De Dutta, S K 1981. *Principles and practices of Rice production*. John Willey and Sons, Singapore.

Ghosh, Biswas G. C and Zapata F J 1993. High

frequency plant regeneration from protoplasts of indica rice (*Oryza sativa* L.), *J. Plant Physiol*, **141**: 470 – 475.

Jelodar N B, Davey M R and Cooking E C 2003.

Studies of the cryopreservation of cell suspension cultures of Iranian Indica and Japonica rice cultivars, In: *Advances in Rice Genetics. Supplement to Rice Genetic-IV*, Khush G S, Brar D S and Hardy B (Eds.), Proceedings, fourth International Rice Genetics Symposium, 22-27 October, 2000, LOS Banos (Philippines): I.R.R.I. pp. 533-535.

Khanum F T, Husnain and S Riazuddin 1997. *In vitro* meristem culture of rice, *Pak. J. Bioch. and Mol. Biology*, 30: 22-36.

Murashige T and Skoog F C 1962. A revised medium for the rapid growth and bioassays with tobacco tissue cultures. *Physiol Plant* 15: 431-497.

Nag K K 1970. Morphogenic studies on Endosperm, Embryo and other Sporophytic Tissue of some parasitic Angiosperms. *Ph. D. Thesis*, Univ. Delhi (India).